科技论文
国际竹藤中心2024年度发表论文统计
[1] Wang M, Long J, Zhao J, et al. Effect of alkali treatment on enzymatic hydrolysis of p-toluenesulfonic acid pretreated bamboo substrates[J]. Bioresource Technology, 2024, 396: 130454.
[2] Chen X, Wang X, Luo X, et al. Bamboo as a naturally-optimized fiber-reinforced composite: Interfacial mechanical properties and failure mechanisms[J]. Composites Part B: Engineering, 2024, 279: 111458.
[3] Yu X, Jin X, He Y, et al. Eco-friendly bamboo pulp foam enabled by chitosan and phytic acid interfacial assembly of halloysite nanotubes: Toward flame retardancy, thermal insulation, and sound absorption[J]. International Journal of Biological Macromolecules, 2024, 260: 129393.
[4] Yu X, He L, Zhang X, et al. Eco-friendly flame-retardant bamboo fiber/polypropylene composite based on the immobilization of halloysite nanotubes by tannic acid-Fe3+ complex[J]. International Journal of Biological Macromolecules, 2024, 265: 130894.
[5] He Y, Jin X, Li J, et al. Mechanical and fire properties of flame-retardant laminated bamboo lumber glued with phenol formaldehyde and melamine urea formaldehyde adhesives[J]. Polymers, 2024, 16(6): 781.
[6] Zhang X, Li J, Bao G, et al. Comparison of Lignocellulose Nanofibrils Extracted from Bamboo Fibrous and Parenchymal Tissues and the Properties of Resulting Films[J]. Polymers, 2024, 16(13): 1829.
[7] He L, Bao G, Yu X, et al. A green and eco-friendly method to enhance Bamboo flame resistance via calcium alginate assisted in-situ mineralization of hydroxyapatite[J]. Chemical Engineering Journal, 2024, 485: 149765.
[8] Zhang K, Yu L, Dai F, et al. Predicting the compression properties of Phyllostachys edulis based on the volume of its fiber sheaths[J]. Industrial Crops and Products, 2024, 222: 119586.
[9] Chen Y, Zhang K, Yu L P, et al. Variations in characteristics of bamboo vascular bundles between Dendrocalamus and Bambusa[J]. Industrial Crops and Products, 2024, 219: 119140.
[10] Zhang K, Yu L, Dai F, et al. Bamboo structure and its impact on mechanical properties: A case study of Bambusa arundinaceae[J]. Forests, 2024, 15(5): 762.
[11] Yu L, Zhang K, Dai F, et al. Variations in the vascular bundle and fiber structure during the stem development of rattan (Calamus caesius Blume)[J]. Forests, 2023, 14(12): 2288.
[12] Zhang K, Yang M, Zhao P, et al. Anatomical Structure and Bending Properties of Calamus zollingeri[J]. Forests, 2024, 15(11): 1915.
[13] Yu L, Zhang K, Dai F, et al. Structural and anatomical analysis of rattan (Calamus balansaeanus Becc.)[J]. Holzforschung, 2024, 78(11-12): 690-703.
[14] Zhang K, Zhao P, Yu L, et al. Analyzing fiber and vascular bundle characteristics, and micro-mechanical properties of Oligostachyum sulcatum[J]. BioResources, 2024, 19(3): 5019.
[15] Xu M, Wang Z, Li Z, et al. The Optimization of the Steam-Heat-Treated Process of Rattan (Calamus simplicifolius) Based on the Response Surface Analysis and Its Chemical Changes[J]. Forests, 2024, 15(4): 615.
[16] Li Z, Li Y, Li S, et al. Enhanced and Sustainable Removal of Indoor Formaldehyde by Naturally Porous Bamboo Activated Carbon Supported with MnOx: Synergistic Effect of Adsorption and Oxidation[J]. Molecules, 2024, 29(3): 663.
[17] Ma J, Shi X, Wang Z, et al. High‐Capacity Zinc Anode Enabled by a Recyclable Biomass Bamboo Membrane Separator[J]. Advanced Materials, 2024, 36(44): 2406429.
[18] Wang J, Li Z, Li Y, et al. Evolution and correlation of the physiochemical properties of bamboo char under successive pyrolysis process[J]. Biochar, 2024, 6(1): 33.
[19] Gu S, Wang C, Zhang W, et al. Simultaneous modification and solidification of bamboo Fiber/Epoxy composites[J]. Composite Structures, 2024, 340: 118204.
[20] Gu S, Wang C, Smith L M, et al. Jute/PP composites for covering honeycomb panels: Designability and mechanical behaviors[J]. Polymer Testing, 2024, 133: 108413.
[21] Gu S, Lourenço A, Wei X, et al. Structural and Chemical Analysis of Three Regions of Bamboo (Phyllostachys Edulis)[J]. Materials, 2024, 17(20): 5027.
[22] Wang Y, Jia S, Ling Z, et al. Balancing the strength and toughness in delignified bamboo through the changing of silicon composition[J]. Materials & Design, 2024, 247: 113408.
[23] Long J, Li Z, Zhong T. Fabrication of clickable bamboo-sourced cellulose nanofibrils for diverse surface modifications: Hydrophobicity and fluorescence functionalities[J]. Carbohydrate Polymers, 2025, 348: 122786.
[24] Chen Y, Xiao Y, Long J, et al. Highly transparent-hazy multiscale films made of bamboo cellulose micro-and nanomaterials through a one-pot approach[J]. Industrial Crops and Products, 2024, 216: 118707.
[25] Li X, Zhong T, Xiao Y, et al. Mechanically robust, thermal insulating sustainable foams fully derived from bamboo fibers through high temperature drying[J]. Carbohydrate Polymers, 2024, 333: 121966.
[26] Chen Y, Zhang Y, Long J, et al. Multiscale cellulose-based optical management films with tunable transparency and haze fabricated by different bamboo components and mechanical defibrillation approaches[J]. Carbohydrate Polymers, 2025, 348: 122811.
[27] Zhao X, Wang G, Zhong T, et al. Industrial adaptability and outdoor durability of highland bamboo bundle laminated veneer lumber (HBLVL)[J]. Industrial Crops and Products, 2024, 218: 118962.
[28] Li X, Ye H, Zhao X, et al. Preparation of dimensionally stable and strong thin-type bamboo bundle laminated veneer lumber through delignification and phenolic resin synergies[J]. Composites Part B: Engineering, 2024, 284: 111662.
[29] Zhao X, Ye H, Chen F, et al. Bamboo as a substitute for plastic: Research on the application performance and influencing mechanism of bamboo buttons[J]. Journal of Cleaner Production, 2024, 446: 141297.
[30] Han S, Li D, Chen F, et al. Bamboo-inspired lightweight, mechanically-stable and vibration-damping structural members for engineering applications[J]. Engineering Structures, 2024, 314: 118339.
[31] Han S, Chen X, Chen F, et al. Sustainable high-strength and dimensionally stable composites through in situ regulation and reconstitution of bamboo-derived lignin and hemicellulose contents[J]. International Journal of Biological Macromolecules, 2024, 267: 131595.
[32] Han S, Zhao X, Li X, et al. Synergistic in-situ reinforcement of lignin and adhesive for high-performance aligned bamboo fibers composites[J]. Journal of Materials Research and Technology, 2024, 28: 879-890.
[33] Chen X, Jiang H, Wang G, et al. Disposable bamboo fiber meal boxes characterized by efficient preparation, excellent performance, and the potential for beneficial degradation[J]. Journal of Cleaner Production, 2024, 434: 139973.
[34] Chen X, Wang G, Li Y. A low-energy, low-toxicity, hydrophobic cellulose membrane derived from waste fiber lunch boxes[J]. Industrial Crops and Products, 2024, 221: 119427.
[35] He Y, Xu H, Han S, et al. Toughness mechanism of the three-dimensional woven structure of bamboo node[J]. Industrial Crops and Products, 2024, 210: 118136.
[36] Xu H, He Y, Han S, et al. A clean, simple, and efficient method for preparing vibration-reducing low-carbon bamboo building materials with high strength[J]. Industrial Crops and Products, 2024, 218: 118889.
[37] Wang X, Su N, Chen X, et al. Impact of temperature on mechanical properties and dimensional stability in a novel gradient pressure bamboo flattening technique[J]. Construction and Building Materials, 2024, 427: 136258.
[38] Ma Y, Luan Y, Chen L, et al. A Novel Bamboo-Wood Composite Utilizing High-Utilization, Easy-to-Manufacture Bamboo Units: Optimization of Mechanical Properties and Bonding Performance[J]. Forests, 2024, 15(4): 716.
[39] Su Q, Yang Y, Zhang Y, et al. Bamboo belts with variable fiber cell angles for winding applications: development of a novel manufacturing technique and assessment of performance feasibility[J]. Composites Part B: Engineering, 2024, 286: 111806.
[40] Luan Y, Yang Y, Jiang M, et al. Unveiling the mechanisms of Moso bamboo's motor function and internal growth stress[J]. New Phytologist, 2024, 243(6): 2201-2213.
[41] Wang X, Chen X, Shang L, et al. A straightforward and efficient gradient pressure method for bamboo flattening: Strain and multi-scale deformation[J]. Composites Part B: Engineering, 2024, 272: 111232.
[42] Huang B, Wang X, Chen L, et al. Impact of the natural structure of cortex and pith ring on water loss and deformation in bamboo processing[J]. Construction and Building Materials, 2024, 411: 134396.
[43] Chen L, Wang X, Huang B, et al. Observation of the fundamental properties of bamboo pith ring[J]. Wood Science and Technology, 2024, 58(2): 797-810.
[44] Song W, Fei B, Fang C, et al. A novel eco-friendly and economical approach of bamboo colorization through biomimetic polymerization of dopamine melanin inspired by photonic microstructure of bird plumage[J]. Journal of Cleaner Production, 2024, 458: 142466.
[45] Jiang M, Cheng A, Chen L, et al. Integrated wood surface densification and Al2O3/melamine impregnated paper coating process: Properties evaluation[J]. Industrial Crops and Products, 2024, 222: 119515.
[46] Jiang M, Liu Z, Cheng A, et al. Enhancing wood functionality: A novel approach with Al2O3 impregnated paper on densified wood surface[J]. Journal of Materials Research and Technology, 2024, 29: 3456-3464.
[47] Chen M, Xu Z, Li H, et al. Characterization of bamboo extrinsic toughening mechanism in bending by X-ray micro-computed tomography (micro-CT)[J]. Industrial Crops and Products, 2024, 208: 117882.
[48] Yuan J , Lei Y , Mi B ,et al.Differences in the hygroscopic behavior of bamboo fiber and parenchyma[J].Wood Science and Technology, 2024, 58(2):575-587.
[49] Chen Q , Yuan J , Chen L ,et al.Chemical-Free Engineering of Natural Bamboo into Highly Sensitive Humidity-Driven Actuators[J].ACS Sustainable Chemistry & Engineering, 2024, 12(25):10.
[50] Zhao L, Huang R, Wang Y, et al. Effects of compressed layer (s) position and thickness on the physico-mechanical properties of sandwich-compressed Chinese fir (Cunninghamia lanceolata)[J]. Wood Material Science & Engineering, 2024: 1-12.
[51] Zhang X, Zhang W, Chang Y, et al. Cloning, characterization, and expression pattern analysis of the BBM gene in tree peony (Paeonia ostii)[J]. Forests, 2023, 15(1): 36.
[52] Bai Y, Ma Y, Chang Y, et al. Unveiling elevated spontaneous mutation rates in Phyllostachys edulis (Moso Bamboo) through whole genome sequencing (WGS) and investigating the impact of atmospheric and room temperature plasma (ARTP) induced mutagenesis[J]. Industrial Crops and Products, 2024, 214: 118618.
[53] Bai Y, Ma J, Ma Y, et al. Color components determination and full-length comparative transcriptomic analyses reveal the potential mechanism of carotenoid synthesis during Paphiopedilum armeniacum flowering[J]. PeerJ, 2024, 12: e16914.
[54] Hei J, Wang J, Wang J, et al. Five Significant Phenols from Phyllostachys glauca McClure Leaves Extracted Using Ultrasound-Assisted Deep Eutectic Solvent Extraction[J]. Separations, 2024, 11(8): 220.
[55] Shao S Y, Wang J, Yao X, et al. Characterization and identification of major flavonoids of bamboo leaf extract by HPLC/ESI-QTOF-MS/MS[J]. Journal of Asian Natural Products Research, 2024, 26(10): 1147-1159.
[56] Zhang B, Yuan H H, Sun J, et al. Five new glycosides from the culms of Phyllostachys nigra var. henonis[J]. Journal of Asian Natural Products Research, 2024, 26(12): 1421-1429.
[57] Yuan H, Xun H, Wang J, et al. Integrated Metabolomic and Transcriptomic Analysis Reveals the Underlying Antibacterial Mechanisms of the Phytonutrient Quercetin-Induced Fatty Acids Alteration in Staphylococcus aureus ATCC 27217[J]. Molecules, 2024, 29(10): 2266.
[58] Zhang B, Yuan H H, Qiu F, et al. Isolation and identification of three new phenylpropanoids from the culms of phyllostachys nigra var. henonis (mitford) Rendle[J]. Natural Product Research, 2024: 1-8.
[59] Wang J, Zhang B, Xun H, et al. Simultaneous Quantification of Twelve Compounds from Bamboo/Wood Vinegar by Gas Chromatography-Mass Spectrometry[J]. Separations, 2024, 11(6): 168.
[60] Xie Y, Zheng H, Bai Y, et al. Photosynthesis in culms of non-foliar organs and effect of light on culm development of Moso bamboo (Phyllostachys edulis)[J]. Environmental and Experimental Botany, 2024, 220: 105672.
[61] Jiang J, Zhang Z, Bai Y, et al. Chromosomal‐level genome and metabolome analyses of highly heterozygous allohexaploid Dendrocalamus brandisii elucidate shoot quality and developmental characteristics[J]. Journal of Integrative Plant Biology, 2024, 66(6): 1087-1105.
[62] Zheng H, Xie Y, Mu C, et al. Deciphering the regulatory role of PheSnRK genes in Moso bamboo: Insights into hormonal, energy, and stress responses[J]. BMC genomics, 2024, 25(1): 252.
[63] Wu C, Cheng Z, Gao J. Mysterious Bamboo flowering phenomenon: A literature review and new perspectives[J]. Science of the Total Environment, 2024, 911: 168695.
[64] Xu J, Cai M, Xie Y, et al. A molecular module with PheIAA17 as the core significantly promotes lateral root germination[J]. Horticultural Plant Journal, 2024.
[65] Mu C, Jiang J, Fang H, et al. Unraveling developmental patterns and differentiation trajectories in a single developing internode of Moso Bamboo (Phyllostachys edulis)[J]. Industrial Crops and Products, 2024, 222: 119646.
[66] Geng R, Xu J, Jiang J, et al. Identification of New Cultivar and Different Provenances of Dendrocalamus brandisii (Poaceae: Bambusoideae) Using Simple Sequence Repeats Developed from the Whole Genome[J]. Plants, 2024, 13(20): 2910.
[67] Cheng W, Xu J, Mu C, et al. Conservation and Divergence of PEPC Gene Family in Different Ploidy Bamboos[J]. Plants, 2024, 13(17): 2426.
[68] Jiang J, Mu C, Bai Y, et al. Selection and Validation of Reference Genes in Dendrocalamus brandisii for Quantitative Real-Time PCR[J]. Plants, 2024, 13(17): 2363.
[69] Mu C, Cheng W, Fang H, et al. Uncovering PheCLE1 and PheCLE10 Promoting Root Development Based on Genome-Wide Analysis[J]. International Journal of Molecular Sciences, 2024, 25(13): 7190.
[70] Fang H, Mu C, Jiang J, et al. The Moso Bamboo D-Type Cell Cycle Protein Family: Genome Organization, Phylogeny, and Expression Patterns[J]. Forests, 2024, 15(2): 289.
[71] Li J, Chen L, Wang J, et al. Spatiotemporal dynamic changes in transpiration in the shoot sheath and its relation to water transportation during rapid growth of Moso bamboo[J]. Frontiers in Forests and Global Change, 2024, 7: 1343206.
[72] Wu C, Tanaka R, Fujiyoshi K, et al. The Impact of Phenological Gaps on Leaf Characteristics and Foliage Dynamics of an Understory Dwarf Bamboo, Sasa kurilensis[J]. Plants, 2024, 13(5): 719.
[73] Yang K, Li Z, Zhu C, et al. A hierarchical ubiquitination-mediated regulatory module controls bamboo lignin biosynthesis[J]. Plant Physiology, 2024, 196(4): 2565-2582.
[74] Liu Y, Zhu C, Yue X, et al. Evolutionary relationship of Moso bamboo forms and a multihormone regulatory cascade involving culm shape variation[J]. Plant Biotechnology Journal, 2024, 22(9): 2578-2592.
[75] Zhu C, Lin Z, Yang K, et al. A bamboo 'PeSAPK4-PeMYB99-PeTIP4-3' regulatory model involved in water transport[J]. The New Phytologist, 2024.
[76] Zhu C, Lin Z, Liu Y, et al. A bamboo bHLH transcription factor PeRHL4 has dual functions in enhancing drought and phosphorus starvation tolerance[J]. Plant, Cell & Environment, 2024, 47(8): 3015-3029.
[77] Li T, Lin Z, Zhu C, et al. Identification and characterization of FBA genes in moso bamboo reveals PeFBA8 related to photosynthetic carbon metabolism[J]. International Journal of Biological Macromolecules, 2024, 275: 132885.
[78] Lin Z, Zhu C, Liu Y, et al. Identification of pectin acetylesterase genes in moso bamboo (Phyllostachys edulis) reveals PePAE6 involved in pectin accumulation of leaves[J]. Industrial Crops and Products, 2024, 222: 119650.
[79] Li T, Li H, Zhu C, et al. Unveiling the biological function of Phyllostachys edulis FBA6 (PeFBA6) through the identification of the fructose-1, 6-bisphosphate aldolase gene[J]. Plants, 2024, 13(7): 968.
[80] Li Y, Xia W, Li Y, et al. Expression and drought functional analysis of one circRNA PecircCDPK from moso bamboo (Phyllostachys edulis)[J]. PeerJ, 2024, 12: e18024.
[81] Sun H, Lou Y, Li H, et al. Unveiling the intrinsic mechanism of photoprotection in bamboo under high light[J]. Industrial Crops and Products, 2024, 209: 118049.
[82] Sun H, Li H, Huang M, et al. Expression and function analysis of phenylalanine ammonia‐lyase genes involved in Bamboo lignin biosynthesis[J]. Physiologia Plantarum, 2024, 176(4): e14444.
[83] Shen Y, Huang J, Wang D, et al. Maize lowers the N2O emissions from maize/soybean intercropping[J]. Rhizosphere, 2024, 31: 100937.
[84] Jiang Y, Zhu L, Goulão L F, et al. The bamboo weaving training as a strategy for women's empowerment toward sustainability in rural revitalization: Practices, challenges and perspectives[C]//Women's Studies International Forum. Pergamon, 2024, 106: 102975.
[85] Gao Z, Wu C, Li N, et al. Visual Aesthetic Quality of Qianjiangyuan National Park Landscapes and Its Spatial Pattern Characteristics[J]. Forests, 2024, 15(8): 1289.
[86] Gao Q, Ni L, Rong S, et al. Enhancement effect of potassium ferrate on self-activation: Significant improvement in pore structure and adsorption performance of activated carbon[J]. Bioresource Technology, 2024, 413: 131546.
[87] Gao Q, Ni L, Ren H, et al. Microwave vacuum pyrolysis rapidly transforms bamboo into solid biofuel: Predicting fuel performances by response surface methodology[J]. Renewable Energy, 2024, 235: 121346.
[88] Su M, Ni L, Rong S, et al. The Ash-Forming Element Migration and Mineral Transformation during the Bamboo Combustion Process[J]. ACS omega, 2024, 9(20): 21974-21982.
[89] Ni L, Gao Q, Ren H, et al. Conversion of infected pine wood into energy charcoal material based on a transportable carbonization system[J]. Biochar, 2024, 6(1): 50.
[90] Gao Q, He Y, Ni L, et al. Evaluation of potassium ferrate activated Fe-N-modified carbons from bamboo shoot shells for arsenic removal[J]. Industrial Crops and Products, 2024, 209: 117952.
[91] Ren H, Gao Q, Ni L, et al. Effect of Deashing Treatment on Ash Fusion Characteristics of Biochar from Bamboo Shoot Shells[J]. Molecules, 2024, 29(6): 1400.
[92] Jia H, Yang Y, Su W, et al. Study of the influence of warehousing conditions on the aging durability of bamboo[J]. Journal of Cleaner Production, 2024, 447: 141508.
[93] Ni H, Su W. Spatial distribution of fine root traits in relation to soil properties and aggregate stability of intensively managed Moso bamboo (Phyllostachys edulis) plantations in subtropical China[J]. Plant and Soil, 2024, 498(1): 487-503.
[94] Chu H, Ni H, Su W, et al. Enhanced Nitrogen Fertilizer Input Alters Soil Carbon Dynamics in Moso Bamboo Forests, Impacting Particulate Organic and Mineral-Associated Carbon Pools[J]. Forests, 2023, 14(12): 2460.
[95] Chu H, Su W, Fan S, et al. Impact of Nitrogen Fertilizer Application on Soil Organic Carbon and Its Active Fractions in Moso Bamboo Forests[J]. Forests, 2024, 15(9): 1483.
[96] Chu H, Su W, Zhou Y, et al. Enzyme activity stoichiometry suggests that fertilization, especially nitrogen fertilization, alleviates nutrient limitation of soil microorganisms in moso bamboo forests[J]. Forests, 2024, 15(6): 1040.
[97] Wang T, Li W, Cui H, et al. Predicting the potential habitat distribution of relict plant Davidia involucrata in China based on the MaxEnt model[J]. Forests, 2024, 15(2): 272.
[98] Wu Y, Guo J, Tang Z, et al. Moso bamboo (Phyllostachys edulis) expansion enhances soil pH and alters soil nutrients and microbial communities[J]. Science of the Total Environment, 2024, 912: 169346.
[99] Zhang J, Guo W, Wang Y, et al. Identifying the regional spatial management of ecosystem services from a supply and demand perspective: A case study of Danjiangkou reservoir area, China[J]. Ecological Indicators, 2024, 158: 111421.
[100] Li S, Wu X, Song X, et al. Long-term nitrogen fertilization enhances crop yield potential in no-tillage systems through enhancing soil fertility[J]. Resources, Conservation and Recycling, 2024, 206: 107622.
[101] Han Z, Wu X, Liang A, et al. Conservation tillage enhances the sequestration and iron-mediated stabilization of aggregate-associated organic carbon in Mollisols[J]. Catena, 2024, 243: 108197.
[102] Ding W, Sun L, Fang Y, et al. Depth-driven responses of soil organic carbon fractions to orchard cover crops across China: A meta-analysis[J]. Soil and Tillage Research, 2025, 246: 106348.
[103] Gu R, Wei S, Li J, et al. Predicting the impacts of climate change on the geographic distribution of moso bamboo in China based on biomod2 model[J]. European Journal of Forest Research, 2024, 143(5): 1499-1512.
[104] Shen J, Fan S, Zhang J, et al. Stoichiometric Homeostasis of N and P in the Leaves of Different-Aged Phyllostachys edulis after Bamboo Forest Expansion in Subtropical China[J]. Forests, 2024, 15(7): 1181.
[105] Zheng S, Wei S, Li J, et al. The phenotypic variation in Moso bamboo and the selection of key traits[J]. Plants, 2024, 13(12): 1625.
[106] Li Z, Guan F, Zhou X, et al. Effect of fertilization on soil fertility and individual stand biomass in strip cut moso bamboo (Phyllostachys edulis) forests[J]. Forests, 2024, 15(2): 252.
[107] Zhou X, Li Z, Liu L, et al. Constructing a non-linear additive crown-width model system for moso bamboo forests in eastern China[J]. Australian Forestry, 2024, 87(1): 37-48.
[108] Zhou X, Zhang X, Li Z, et al. A climate sensitive nonlinear mixed-effects height to crown base model: a study focuses on Phyllostachys pubescens[J]. Trees, 2024, 38(4): 849-862.
[109] Zhou X, Zhang X, Sharma R P, et al. Response of bamboo canopy density to terrain, soil and stand factors[J]. Trees, 2024, 38(6): 1353-1366.
[110] Li S, Liu C, Wang Y, et al. Three-dimensional visualization of the conducting tissue in a bamboo culm base[J]. Wood Science and Technology, 2024, 58(4): 1585-1603.
[111] Wang S, Lou Y, Qi H, et al. BZR1 targets steroid 22-alpha hydroxylase 4 to negatively regulates cell elongation in bamboo[J]. International Journal of Biological Macromolecules, 2025, 289: 138832.
[112] Li H, Li Z, Yang K, et al. Comparison analysis of ABCG subfamily in bamboo and the potential function of PeABCG15 in monolignol transport[J]. Plant Physiology and Biochemistry, 2024, 217: 109278.
[113] Lin X, Han L, Gao Y, et al. Identification and characterization of circRNAs associated with cell wall formation in moso bamboo (Phyllostachys edulis) based on multi-omics data[J]. Industrial Crops and Products, 2025, 223: 120240.
[114] Hou Y, Gan J, Fan Z, et al. Haplotype-based pangenomes reveal genetic variations and climate adaptations in moso bamboo populations[J]. Nature communications, 2024, 15(1): 8085.
[115] Yuyu E, Chang Z, Su W, et al. Multi-functional Gleditsia sinensis galactomannan-based hydrogel with highly stretchable, adhesive, and antibacterial properties as wound dressing for accelerating wound healing[J]. International Journal of Biological Macromolecules, 2024, 283: 137279.
[116] Li Y, Yuan Z, Li M, et al. Replacing plastic automotive interiors with bamboo: a study on the mechanical and flame-retardant properties of melamine polyphosphate-modified bamboo fiber-reinforced composites[J]. Journal of Materials Science, 2024: 1-14.
[117] 陈雷, 王金革, 李姗, 等.低温对不同早园竹抗寒性和糖类物质含量的影响[J].中南林业科技大学学报, 2024, 44(09): 161-169. DOI:10.14067/j.cnki.1673- 923x.2024.09.016.
[118] 魏松坡, 范少辉, 刘广路. 24种竹类植物根系丛枝菌根真菌群落组成及多样性差异分析[J].菌物学报, 2025, 44(02): 14-30. DOI:10.13346/j.mycosystema. 240197.
[119] 刘晨君, 杨淑敏, 薛紫荞, 等. 计算机断层扫描马尾松缺陷及其图像解译[J].北京林业大学学报,2024,46(10):144-152.
[120] 漆良华, 田慧敏 ,王辉民 ,等. 南方低质低效人工林质量改善与生态服务提升技术研究前瞻[J].中国水土保持科学(中英文), 2024, 22(05): 1-8.DOI: 10.16843/j.sswc.2024132.
[121] 李明鹏, 李昊远, 苑之童, 等. 竹纤维汽车内饰夹层结构轻量化复合材料性能[J]. 世界竹藤通讯, 2024, 22(05): 12-21.
[122] 袁海华, 荀航, 曹先爽, 等. 黄酮类化合物抑制β-酮酰基-ACP还原酶的构效关系研究[J]. 林产化学与工业, 2024, 44(04): 18-28.
[123] 栾玉, 江梦虹, 杨雨婷, 等. 树木生长应力形成机理[J]. 林业科学, 2024, 60(10): 154-163.
[124] 黄彪, 彭红明, 江泽慧. 绿色发展背景下“竹&园&艺”的有机融合—以第十届中国花卉博览会竹藤园建造为例[J]. 世界竹藤通讯, 2024, 22(04): 78-89.
[125] 黄彪, 刘晓明, 高洁, 等. 北京园林之佛寺道观山水环境溯源及部分典籍考[C]. 2023年风景园林学会年会论文集, 2024, (05): 10-17.
[126] 李祎, 单博文, 杨丽, 等. 近20年来肥城市林地时空变化及其驱动因子[J].林业科学, 2024, 60(07): 40-46.
[127] 顾丽玲, 姚曦, 安容苗, 等. 竹叶提取物中7种黄酮成分含量测定及抗氧化分析[J]. 色谱, 2024, 42(10): 972-978.
[128] 刘昱彤, 王甲钧, 王汉坤, 等. 纳米纤维素高浓度制备研究进展[J]. 化工新型材料, 2024, 52(11): 7-13. DOI:10.19817/j.cnki.issn1006-3536.2024.11.029.
[129] 罗慧莹, 刘勇, 苏文会, 等. 施肥对毛竹林凋落物前期分解过程的影响[J]. 生态学杂志, 2024, 43(12): 3640-3647.DOI:10.13292/j.1000-4890.202412.021.
[130] 张翱, 李文婷, 王天祥, 等. 毛竹林土壤易氧化有机碳区域分异及影响因素[J]. 林业科学, 2024, 60(06):1-12.
[131] 苑之童, 李寅萱, 李明鹏, 等. 纤维含量对汽车内饰用夹层结构植物纤维增强PP复合材料性能的影响[J]. 塑料工业, 2024, 52(05): 140-146.
[132] 程鹏, 钟土华, 陈红. 植物纤维自结合成型环保材料研究进展[J]. 复合材料学报, 2024, 41(08): 3897-3909. DOI:10.13801/j.cnki.fhclxb.20240412.001.
[133] 徐晴, 江泽慧. 利用空间信息学应对“以竹代塑”资源供给挑战[J]. 世界竹藤通讯, 2024, 22(01): 1-7.
[134] 马腾飞, 刘悦, 战雅微, 等. 竹材酶水解制备单糖的预处理研究进展[J]. 林业科学, 2024, 60(03): 150-159.
[135] 赵翔, 叶翰舟, 陈复明, 等. 基于以竹代塑的竹纽扣产业与加工技术分析[J].竹子学报, 2024, 43(01): 19-27.
[136] 申景昕, 范少辉, 徐晴, 等. 竹类植物生长影响因素研究进展[J]. 世界竹藤通讯, 2024, 22(01): 96-102.
[137] 宫俊琛, 李楠. 日本森林特色小镇建设模式及其对中国的启示[J]. 自然保护地, 2024, 4(01): 123-136.